If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-50x+12=0
a = 1; b = -50; c = +12;
Δ = b2-4ac
Δ = -502-4·1·12
Δ = 2452
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2452}=\sqrt{4*613}=\sqrt{4}*\sqrt{613}=2\sqrt{613}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{613}}{2*1}=\frac{50-2\sqrt{613}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{613}}{2*1}=\frac{50+2\sqrt{613}}{2} $
| 4x=1454 | | -5=x/3-7 | | 4-9w=94 | | −2.6p−17.117=1.7(1−5.1p) | | -2(10-2x)=4(2x+2) | | 3/4x-10=2/3(x-6) | | 60x+8x=2x+35 | | 5b+4b=1+5b+6+9 | | 61=-7y+26 | | 3x+15=-x+7 | | 3(x+5)=-4x+8 | | 26+-7y=61 | | H3x-24=x+4 | | 61=−7y+26 | | 6x-12=-10+36 | | (10x-5)=(x+20) | | 10x+8=-2+5x | | 5+p-4p=11 | | 4(x+6.2)+6.6=5x−4(−4x−7) | | 4(x+6.2)+6.6= 5x−4(−4x−7)5x−4(−4x−7) | | 0.3x+0.3x(x=10)=300 | | 1/3x+1/4x=7/20 | | K+8-2k=-20 | | B=25.50-0.15x | | -7d+12=75 | | 4w=15.48 | | 87+x+92+135+105=360 | | 11x+x=55 | | 4*(0.3+y)=1.2+4y | | 10u=u+36u= | | 4*(0.3+y)=1.2+0.3y | | -1-t-t²=0 |